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Abstract. A phenomenological analysis of the three-family model based on the local gauge group SU(3)c⊗
SU(3)L⊗U(1)X with right-handed neutrinos is carried out. Instead of using the minimal scalar sector able
to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which
combined with an anomaly-free discrete symmetry, produces a quark mass spectrum without hierarchies
in the Yukawa coupling constants. We also embed the structure into a simple gauge group and show some
conditions for achieving a low energy gauge coupling unification, avoiding possible conflict with proton de-
cay bounds. By using experimental results from the CERN-LEP, SLAC linear collider, and atomic parity
violation data, we update constraints on several parameters of the model.

PACS. 12.60.Cn; 12.15.Ff; 12.15.Mm

1 Introduction

Two intriguing puzzles completely unanswered in modern
particle physics are the number of fermion families in na-
ture, and the pattern of masses and mixing angles in the
fermion sector. One interesting attempt to answer to the
question of family replication is provided by the 3-3-1 ex-
tension of the local gauge symmetry SU(3)c⊗SU(2)L⊗
U(1)Y of the standard model (SM) of the strong and elec-
troweak interactions [1]. This extension, based on the local
gauge groupSU(3)c⊗SU(3)L⊗U(1)X , has among its best
features that several models can be constructed so that
anomaly cancellation is achieved by an interplay between
the families, all of them under the condition Nf =Nc = 3,
whereNf is the number of families andNc is the number of
colors of SU(3)c (three-family models) [2].
Two 3-3-1 three-family models have been extensively

studied over the last decade [2, 3]. In one of them, the
three known left-handed lepton components for each fam-
ily are associated to three SU(3)L triplets as (νl, l

−, l+)L,
where l+L is related to the right-handed isospin singlet of
the charged lepton l−L in the SM [2]. In the other model, the
three SU(3)L lepton triplets are of the form (νl, l

−, νcl )L,
where νcl is related to the right-handed component of the
neutrino field νl (a model with right-handed neutrinos) [3].
In the first model, anomaly cancellation implies quarks
with the exotic electric charges−4/3 and 5/3, while in the
second one the extra particles have only ordinary electric
charges.

a e-mail: lasanche@unalmed.edu.co

Our aim in this paper is to do a phenomenological an-
alysis of the 3-3-1 model in the version that includes right-
handed neutrinos, including a detailed study of the fermion
mass spectrum, with emphasis in the quark sector. Previ-
ous work [3] just presented the Yukawa Lagrangians with-
out looking for constraints able to produce a consistent
quark mass spectrum. It will be shown that a convenient
set of four Higgs scalars, combined with an appropriate
anomaly-free discrete Z2 symmetry, produces an appeal-
ing quarkmass spectrumwithout strong hierarchies for the
Yukawa couplings. Furthermore, we shall study the embed-
ding and unification of this gauge structure into SU(6),
which is an appropriate unification gauge group. Finally,
we will set updated constraints on several parameters of
the model.
The problem of lepton masses in the context of

3-3-1 three-family models has been studied, for example, in
[4, 5], and we already know, from the analysis presented in
[5–7], that models based on the 3-3-1 local gauge structure
are suitable for describing some neutrino properties, be-
cause they include in a natural way most of the ingredients
needed to explain the masses and mixing in the neutrino
sector. In particular, [6] addresses this issue for the model
studied here.
This paper is organized as follows. In Sect. 2 we re-

view the model, introduce the new scalar sector, embed the
structure into a covering group and calculate the charged
and neutral electroweak currents. In Sect. 3 we study the
charged fermion mass spectrum. In Sect. 4 we do the renor-
malization group equation analysis and show the condi-
tions for the gauge coupling unification. In Sect. 5 we fix
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the new bounds on the mixing angle between the two flavor
diagonal neutral currents present in the model, and discuss
the constraints coming from violation of the unitarity of
the Cabbibo–Kobayashi–Maskawa (CKM) quark-mixing
matrix and from flavor changing neutral currents (FCNC).
Finally, in the last section, we present our conclusions.

2 The model

Themodel that we are about to study here was sketched for
the first time in the literature in the first reference in [3],
with some phenomenology presented in the other four pa-
pers in the same reference. Some of the formulas quoted in
the following sections are taken from those references and
from [8]; corrections to someminor printing mistakes in the
original papers are included.

2.1 The gauge group

As was stated above, the model that we are interested in is
based on the local gauge group SU(3)c⊗SU(3)L⊗U(1)X ,
which has 17 gauge bosons: one gauge field Bµ associ-
ated with U(1)X , the eight gluon fields G

µ associated with
SU(3)c which remain massless after breaking the symme-
try, and another eight gauge fields associated with SU(3)L
and for convenience written as [8]

1

2
λαA

µ
α =

1
√
2

⎛
⎝
Dµ1 W

+µK+µ

W−µ Dµ2 K
0µ

K−µ K̄0µ Dµ3

⎞
⎠ ,

where Dµ1 = A
µ
3/
√
2+Aµ8/

√
6, Dµ2 = −A

µ
3/
√
2+Aµ8/

√
6,

andDµ3 =−2A
µ
8/
√
6. λi, i= 1, 2, . . . , 8, are the eight Gell–

Mann matrices normalized as Tr(λiλj) = 2δij .
The charge operator associated with the unbroken

gauge symmetry U(1)Q is given by

Q=
λ3L

2
+
λ8L

2
√
3
+XI3 , (1)

where I3 = diag.(1, 1, 1) is the diagonal 3×3 unit matrix,
and theX values are related to the U(1)X hypercharge and
are fixed by anomaly cancellation. The sine square of the
electroweak mixing angle is given by

S2W = 3g
2
1/(3g

2
3+4g

2
1) , (2)

where g1 and g3 are the gauge coupling constants of U(1)X
and SU(3)L, respectively, and the photon field is given
by [3, 8]

Aµ0 = SWA
µ
3 +CW

[
TW√
3
Aµ8 +

√
(1−T 2W/3)B

µ

]
, (3)

where CW and TW are the cosine and tangent of the elec-
troweak mixing angle, respectively.

There are two weak neutral currents in the model as-
sociated with the two flavor diagonal neutral weak gauge
bosons

Zµ0 = CWA
µ
3 −SW

[
TW√
3
Aµ8 +

√
(1−T 2W/3)B

µ

]
,

Z ′µ0 =−
√
(1−T 2W/3)A

µ
8 +
TW√
3
Bµ , (4)

and one current associated with the flavor nondiagonal
electrically neutral gauge boson K0µ, which carries a kind
of weak V-isospin charge. In the former expressions, Zµ0
coincides with the weak neutral current of the SM [3, 8].
Using (3) and (4), we realize that the gauge boson Y µ

associated with the abelian hypercharge in the SU(3)c⊗
SU(2)L⊗U(1)Y SM gauge group is

Y µ =
TW√
3
Aµ8 +

√
(1−T 2W/3)B

µ . (5)

2.2 The spin 1/2 particle content

The quark content for the three families in this model
(known in the literature as the 3-3-1 model with right-
handed neutrinos) is the following: QiL = (u

i, di, Di)L ∼

(3, 3, 0), i= 1, 2 for two families, where DiL are two extra
quarks of electric charge−1/3 (the numbers in parentheses
stand for the [SU(3)c, SU(3)L, U(1)X ] quantum numbers

in that order); Q3L = (d
3, u3, U)L ∼ (3, 3∗, 1/3), where UL

is an extra quark of electric charge 2/3. The right-handed
quarks are uacL ∼ (3

∗, 1,−2/3), dacL ∼ (3
∗, 1, 1/3) with a =

1, 2, 3 being a family index, DicL ∼ (3
∗, 1, 1/3), i= 1, 2, and

U cL ∼ (3
∗, 1,−2/3).

The lepton content is given by the three SU(3)L anti-
triplets LlL = (l

−, ν0l , ν
0c
l )L ∼ (1, 3

∗,−1/3), for l = e, µ, τ
a leptonic family index, and the three singlets l+L ∼ (1, 1, 1),
where ν0l is the neutrino field associated with the lepton
l−, and ν0cl plays the role of the right-handed neutrino field
associated to the same flavor. Notice that this model does
not contain exotic charged leptons, and universality for the
known leptons in the three families is present at the tree-
level in the weak basis.
With these quantum numbers it is just a matter

of counting to check that the model is free of the fol-
lowing gauge anomalies [8]: [SU(3)c]

3 (as in the SM,

SU(3)c is vector-like); [SU(3)L ]
3 (six triplets and six anti-

triplets), [SU(3)c]
2U(1)X ; [SU(3)L]

2U(1)X ; [grav]
2U(1)X

and [U(1)X ]
3, where [grav]2U(1)X stands for the gravita-

tional anomaly as described in [9].

2.3 The new scalar sector

Instead of using the set of three triplets of Higgs scalars
introduced in the original papers [3], or the most economi-
cal set of two triplets introduced in [8] (none of them being
able to produce a realistic mass spectrum), we propose here
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to work with the following set of four Higgs scalar fields,
and vacuum expectation values (VEV):

〈φT1 〉= 〈(φ
+
1 , φ

0
1, φ

′0
1 )〉= 〈(0, 0, v1)〉 ∼ (1, 3, 1/3) ,

〈φT2 〉= 〈(φ
+
2 , φ

0
2, φ

′0
2 )〉= 〈(0, v2, 0)〉 ∼ (1, 3, 1/3) ,

〈φT3 〉= 〈(φ
0
3, φ

−
3 , φ

′−
3 )〉= 〈(v3, 0, 0)〉 ∼ (1, 3,−2/3) ,

〈φT4 〉= 〈(φ
+
4 , φ

0
4, φ

′0
4 )〉= 〈(0, 0, V )〉 ∼ (1, 3, 1/3) , (6)

with the hierarchy v1 ∼ v2 ∼ v3 ∼ 102 GeV� V . The an-
alysis shows that this set of VEV breaks the SU(3)c⊗
SU(3)L⊗U(1)X symmetry into two steps following the
scheme

SU(3)c⊗SU(3)L⊗U(1)X
(V+v1)−→

SU(3)c⊗SU(2)L⊗U(1)Y
(v2+v3)−→ SU(3)c⊗U(1)Q ,

which in turn allows for the matching conditions g2 = g3
and

1

g2Y
=
1

g21
+
1

3g22
, (7)

where g2 and gY are the gauge coupling constants of the
SU(2)L and U(1)Y gauge groups in the SM, respectively.
We will see in the next sections that this scalar struc-

ture properly breaks the symmetry, provides with masses
for the gauge bosons and, combined with a discrete sym-
metry; it is enough to produce a consistent mass spectrum
for the up and down quark sectors (a realistic mass spec-
trum in the lepton sector requires new ingredients as, for
example, SU(3)L leptoquark scalar triplets and/or sextu-
plets, as we will briefly mention subsequently).

2.4 SU(6) ⊃ SU(5) as a covering group

The Lie algebra of SU(3)⊗SU(3)⊗U(1) is a maximal
subalgebra of the simple algebra of SU(6). The five fun-
damental irreducible representations (irreps) of SU(6)
are: {6}, {6∗}, {15}, {15∗} and {20}, which is real. The
branching rules for these fundamental irreps into SU(3)c⊗
SU(3)L⊗U(1)X are [10]:

{6}→(3, 1,−1/3)⊕ (1, 3, 1/3) ,

{15}→(3∗, 1,−2/3)⊕ (1, 3∗, 2/3)⊕ (3, 3, 0) ,

{20}→(1, 1, 1)⊕ (1, 1,−1)⊕ (3, 3∗, 1/3)⊕ (3∗, 3,−1/3) ,

where we have normalized the U(1)X hypercharge for our
convenience.
From these branching rules and from the fermion struc-

ture presented above, it is clear that all the particles in the
3-3-1model with right-handed neutrinos can be included in
the following SU(6) reducible representation

5{6∗}+3{20}+4{15} , (8)

which includes such new exotic particles as, for example,

(N0, E+, E′+)L ∼ (1, 3
∗, 2/3)⊂ {15} ,

E−L ∼ (1, 1,−1)⊂ {20} ,

(D′c, U ′c, U ′′c)L ∼ (3
∗, 3,−1/3)⊂ {20} .

The analysis reveals that the reducible representation
in (8) is anomalous. The simplest SU(6) reducible repre-
sentation, which is free of anomalies and includes the fields
in (8), is given by [10]

8{6∗}+3{20}+4{15} , (9)

which also includes the following new exotic particles (all
with ordinary electric charges): four families of
3-3-1 up-type and down-type quarks, four more exotic
down-type quarks, plus eight families of 3-3-1 lepton
triplets, among a good deal of other particles.
It is clear from the following decomposition of irrep

{6∗} of SU(6) into SU(5)⊗U(1)

{6∗}= {dc,−N0E, E
−, N0cE }L

−→ {dc,−N0E, E
−}L⊕N

0c
EL , (10)

that for N0EL = νeL and E
−
L = e

−
L , we obtain the known

SU(5) model of Georgi and Glashow [11]; so, in some sense,
this model is an extension of one of the first grand unified
theories (GUT) presented in the literature.

2.5 The gauge boson sector

After breaking the symmetry with 〈φi〉, i = 1, . . . , 4, and
using the covariant derivative for triplets Dµ = ∂µ−
ig3λαLA

µ
α/2− ig1XBµI3, we obtain the following mass

terms in the gauge boson sector.

2.5.1 Spectrum in the charged gauge boson sector

A straightforward calculation shows that the charged
gauge bosons K±µ and W

±
µ do not mix with each other

and have the following masses:M2
K±
= g23(V

2+ v21+ v
2
3)/2

and M2W = g
2
3(v
2
2+ v

2
3 )/2, which for g3 = g2 and using the

experimental value MW = 80.423±0.039GeV [12] implies√
v22+ v

2
3 
 175GeV. In the same way, K

0µ (and its an-

tiparticle K̄0µ) does not mix with the other two electrically
neutral gauge bosons and gets a bare massM2

K0
= g23(V

2+

v21+ v
2
2 )/2≈M

2
K±
. Notice that v1 does not contribute to

theW± mass because it is associated with an SU(2)L sing-
let Higgs scalar.

2.5.2 Spectrum in the neutral gauge boson sector

The algebra now shows that in this sector, the photon field
Aµ0 in (3) decouples fromZ

µ
0 andZ

′µ
0 and remains massless.

Then, in the basis (Zµ0 , Z
′µ
0 ), we obtain the following 2×2

mass matrix

η2g23
4C2W

⎛
⎝

v22+v
2
3

η2
v22C2W−v

2
3

η

v22C2W−v
2
3

η
v22C

2
2W + v

2
3+4(V

2+ v21)C
4
W

⎞
⎠ , (11)
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where C2W =C
2
W −S

2
W and η

−2 = (3−4S2W ). This matrix

provides a mixing between Zµ0 and Z
′µ
0 of the form

tan(2θ) =
2
√
(3−4S2W )(v

2
2C2W − v

2
3)

4C4W (V
2+ v21)−2v

2
3C2W − v

2
2(3−4S

2
W −C

2
2W )

V→∞
−→ 0 . (12)

The physical fields are then

Zµ1 = Z
µ
0 cos θ−Z

′µ
0 sin θ ,

Zµ2 = Z
µ
0 sin θ+Z′

µ
0 cos θ .

An updated bound on the mixing angle θ will be calculated
in Sect. 5 using experimental results.

2.6 Currents

2.6.1 Charged currents

The Hamiltonian for the currents, charged under the gen-

erators of the SU(3)L group, is H
CC = g3(W

+
µ J

µ

W+
+

K+µ J
µ

K+
+K0µJ

µ

K0
)/
√
2+h.c., with

Jµ
W+
=

(
2∑
i=1

ūiLγ
µdiL

)
− ū3Lγ

µd3L−
∑
l=e,µ,τ

ν̄lLγ
µl−L ,

Jµ
K+
=

(
2∑
i=1

ūiLγ
µDiL

)
− ŪLγ

µd3L−
∑
l=e,µ,τ

ν̄0clLγ
µl−L ,

Jµ
K0
=

(
2∑
i=1

d̄iLγ
µDiL

)
− ŪLγ

µu3L−
∑
l=e,µ,τ

ν̄0clLγ
µνlL ,

where K0µ is an electrically neutral gauge boson but car-
ries a kind of weak V-isospin charge, besides its flavor
nondiagonal.

2.6.2 Neutral currents

The neutral currents Jµ(EM), Jµ(Z) and Jµ(Z
′), associ-

ated with the Hamiltonian

H0 = eAµJµ(EM)+ (g3/CW )Z
µJµ(Z)

+ (g1/
√
3)Z ′µJµ(Z

′) (13)

are [3]

Jµ(EM) =
2

3

[
3∑
a=1

ūaγµua+ ŪγµU

]

−
1

3

[
3∑
a=1

d̄aγµd
a+

2∑
i=1

D̄iγµD
i

]

−
∑
l=e,µ,τ

l̄−γµl
−

=
∑
f

qf f̄γµf ,

Jµ(Z) = Jµ,L(Z)−S
2
WJµ(EM) ,

Jµ(Z
′) =−Jµ,L(Z

′)+TWJµ(EM) ,

where e = g3 SW = g1CW
√
(1−T 2W/3) > 0 is the electric

charge, qf is the electric charge of the fermion f in units of
e, and Jµ(EM) is the electromagnetic current.
The left-handed currents are

Jµ,L(Z) =
1

2
[
3∑
a=1

(ūaLγµu
a
L− d̄

a
Lγµd

a
L)

+
∑
l=e,µ,τ

(ν̄lLγµνlL− l̄
−
Lγµl

−
L )]

=
∑
F

F̄LT3fγµFL , (14)

Jµ,L(Z
′) = S−12W [ū1Lγµu1L+ ū2Lγµu2L

− d̄3Lγµd3L−
∑
l

(l̄−Lγµl
−
L )]

+T−12W [d̄1Lγµd1L+ d̄2Lγµd2L

− ū3Lγµu3L−
∑
l

(ν̄lLγµνlL)]

+T−1W [D̄1LγµD1L+ D̄2LγµD2L

− ŪLγµUL−
∑
l

(ν̄0clLγµν
0c
lL)]

=
∑
F

F̄LT
′
3fγµFL , (15)

where S2W = 2SWCW , T2W = S2W /C2W , T3f =
Dg(1/2,−1/2, 0) is the third component of the weak
isospin, T ′3f =Dg(S

−1
2W , T

−1
2W ,−T

−1
W ) is a convenient 3×3

diagonal matrix, both acting on the representation 3 of
SU(3)L (the negative value when acting on the represen-
tation 3∗, which is also true for the matrix T3f ) and F
is a generic symbol for the representations 3 and 3∗ of
SU(3)L. Notice that Jµ(Z) is the neutral current of the SM
(with the extra fields included in Jµ(EM)). This allows us
to identify Zµ as the neutral gauge boson of the SM, which
is consistent with (4) and (5).
The couplings of the flavor diagonal mass eigenstates

Zµ1 and Z
µ
2 are given by

HNC =
g3

2CW

2∑
i=1

Zµi

∑
f

{f̄γµ[aiL(f)(1−γ5)

+aiR(f)(1+γ5)]f}

=
g3

2CW

2∑
i=1

Zµi

∑
f

{f̄γµ[g(f)iV − g(f)iAγ5]f} ,

with

a1L(f) = cos θ(T3f − qfS
2
W )

+Θ sin θ(T ′3f − qfTW ),

a1R(f) =−qf
(
cos θS2W +Θ sin θTW

)
,

a2L(f) = sin θ(T3f − qfS
2
W )

−Θ cos θ(T ′3f − qfTW ) ,

a2R(f) =−qf
(
sin θS2W −Θ cos θTW

)
, (16)



D.A. Gutiérrez et al.: Phenomenology of the SU(3)c⊗SU(3)L⊗U(1)X model with right-handed neutrinos 501

where Θ = SWCW /
√
(3−4S2W ). From these coefficients

we can read

g(f)1V = cos θ(T3f −2qfS
2
W )

+Θ sin θ(T ′3f −2qfTW ) ,

g(f)2V = sin θ(T3f −2qfS
2
W )

−Θ cos θ(T ′3f −2qfTW ) ,

g(f)1A = cos θT3f +Θ sin θT
′
3f ,

g(f)2A = sin θT3f −Θ cos θT
′
3f . (17)

The values of giV and giA, with i = 1, 2, are listed in Ta-
bles 1 and 2 [3].
As we can see, in the limit θ = 0 the couplings of Zµ1 to

the ordinary leptons and quarks are the same as in the SM;
due to this property, we can test the new physics beyond
the SM predicted by this particular model.

Table 1. The Zµ1 −→ f̄f couplings

f g(f)1V g(f)1A

u1,2 ( 12 −4S
2
3

W ) cos θ+Θ(s
−1
2W −

4TW
3 ) sin θ

1
2 cos θ+ΘS

−1
2W sin θ

u3 ( 12 −4S
2
3
W ) cos θ−Θ(T

−1
2W +

4TW
3 ) sin θ

1
2 cos θ−ΘT

−1
2W sin θ

d1,2 (− 12 +
2S2W
3 ) cos θ+Θ(T

−1
2W +

2TW
3 ) sin θ − 12 cos θ+ΘT

−1
2W sin θ

d3 (− 12 +
2S2W
3 ) cos θ−Θ(S

−1
2W −

2TW
3 ) sin θ − 12 cos θ−ΘS

−1
2W sin θ

U −
4S2W
3 cos θ−Θ(T−1W + 4TW3 ) sin θ ΘT−1W sin θ

D1,2
2S2W
3 cos θ+Θ(T

−1
W +

2S2W
3 ) sin θ −ΘT−1W sin θ

e, µ, τ (− 12 +2S
2
W ) cos θ−Θ(S

−1
2W −2TW ) sin θ − 12 cos θ−ΘS

−1
2W sin θ

νe, νµ, ντ
1
2 cos θ−ΘT

−1
2W sin θ

1
2 cos θ−ΘT

−1
2W sin θ

ν0ce , ν
0c
µ , ν

0c
τ −ΘT−1W sin θ −ΘT−1W sin θ

Table 2. The Zµ2 −→ f̄f couplings

f g(f)2V g(f)2A

u1,2 ( 12 −
4S2W
3 ) sin θ−Θ(S

−1
2W −

4TW
3 ) cos θ

1
2 sin θ−ΘS

−1
2W cos θ

u3 ( 12 −
4S2W
3 ) sin θ+Θ(T

−1
2W +

4TW
3 ) cos θ

1
2 sin θ+ΘT

−1
2W cos θ

d1,2 (− 12 +
2S2W
3 ) sin θ−Θ(T

−1
2W +

2TW
3 ) cos θ − 12 sin θ−ΘT

−1
2W cos θ

d3 (− 12 +
2S2W
3 ) sin θ+Θ(S

−1
2W −

2TW
3 ) cos θ − 12 sin θ+ΘS

−1
2W cos θ

U −
4S2W
3 sin θ+Θ(T−1W + 4TW3 ) cos θ ΘT−1W cos θ

D1,2
2S2W
3 sin θ−Θ(T

−1
W + 2TW3 ) cos θ −ΘT−1W cos θ

e, µ, τ (− 12 +2S
2
W ) sin θ+Θ(S

−1
2W −

2TW
3 ) cos θ − 12 sin θ+ΘS

−1
2W cos θ

νe, νµ, ντ
1
2 sin θ+ΘT

−1
2W cos θ

1
2 sin θ+ΘT

−1
2W cos θ

ν0ce , ν
0c
µ , ν

0c
τ ΘT−1W cos θ ΘT−1W cos θ

3 Fermion masses

The Higgs scalars introduced in Sect. 2 break the symme-
try in an appropriate way and, at the same time, produce
mass terms for the fermion fields via Yukawa interactions.
In order to restrict the number of Yukawa couplings,

and produce a realistic mass spectrum, we introduce an
anomaly-free discrete Z2 symmetry [13] with the following
assignments of charges:

Z2(Q
a
L, φ2, φ3, φ4, u

ic
L , d

ac
L ) = 1

Z2(φ1, u
3c
L , U

c
L, D

ic
L , LlL, l

+
L ) = 0 , (18)

where a= 1, 2, 3, i= 1, 2 and l = e, µ, τ are family indexes
as above.
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3.1 The up quark sector

The most general invariant Yukawa Lagrangian for the up
quark sector is given by

LuY =
∑
α=1,2,4

Q3LφαC(h
U
αU

c
L+

3∑
a=1

huaαu
ac
L ) (19)

+
2∑
i=1

QiLφ
∗
3C(

3∑
a=1

huiau
ac
L +h

′U
i U

c
L)+h.c. ,

where the h′s are Yukawa coupling constants and C is the
charge conjugation operator.
Then, in the basis (u1, u2, u3, U), and using the Z2 sym-

metry, we get from (18), (19) the following tree-level up
quark mass matrix

Mu =

⎛
⎜⎜⎜⎝

0 0 0 hu11v1

0 0 0 hu21v1

hu13v3 h
u
23v3 h

u
32v2 h

u
34V

h′U1 v3 h
′U
2 v3 h

U
2 v2 h

U
4 V

⎞
⎟⎟⎟⎠ , (20)

which is a rank one see-saw type mass matrix. As a mat-
ter of fact, analytical and numerical analysis of this ma-
trix shows that M †uMu has one eigenvalue equal to zero
related to the eigenvector [(hu32h

′U
2 −h

u
23h

U
2 ), (h

u
13h

U
2 −

hu32h
′U
1 ), (h

u
23h

′U
1 −h

u
13h

′U
2 ), 0], which we may identify with

the up quark u in the first family, which remains massless
at the tree-level.
In what follows, and without loss of generality, we shall

impose the condition v1 = v2 = v3 ≡ v� V , with the value
for v fixed by the mass of the charged weak gauge boson
M2
W±
= g23(v

2
2+v

2
3)/2 = g

2
3v
2, which implies v ≈ 175/

√
2 =

123GeV. Also, in order to simplify the otherwise cumber-
some calculations and to avoid proliferation of unnecessary
parameters at this stage of the analysis, we propose to start
with the following simple matrix

M ′u = hv

⎛
⎜⎝
0 0 0 1
0 0 0 1
1 1 hu32/hδ

−1

1 1 1 δ−1

⎞
⎟⎠ , (21)

where δ = v/V is a perturbation expansion parameter and
h is a parameter that can take any value of order one.
Neglecting terms of order δ5 and higher, the four

eigenvalues of M ′†uM
′
u are: one zero eigenvalue related to

the eigenstate (u1−u2)/
√
2 (notice the maximal mixing

present); one see-saw eigenvalue 4h2V 2δ4 = 4h2v2δ2 ≈m2c
associated to the charm quark mass, and two tree-level
values that we identify with the masses of the top quark t
and the heavy quark U given, respectively, by

h2V 2δ2

2
[e2−+ δ

2e2+(4− e
2
−)/4]≈

v2

2
(h−hu32)

2 ≈m2t ;

h2V 2[2+ δ2(6+ e+/2)+ δ
4(4e2+− e

2
+e
2
−−32)/8]≈m

2
U ,

where e± = (1±hu32/h).
So, in the up quark sector, the heavy quark gets a large

mass of order V (the 3-3-1 scale), the top quark gets a mass

at the electroweak scale [times a difference of Yukawa cou-
plings that in the general case of the matrix (20) is (hU2 −
hu32)], the charm quark gets a see-saw mass, and the first
family up quark u remains massless at the tree-level. From
the former expressions, and using mt ≈ 175GeV [12], we
get |hU2 −h

u
32| ∼ 2 and mc ≈ 2hv

2/V , which implies V ≈
hm2t/mc ≈ 19.4hTeV, fixing in this way an upper limit for
the 3-3-1 mass scale.
The consistency of this model requires finding a mech-

anism that is able to produce a mass for the up quark u
in the first family. A detailed study of the Lagrangian in
(19) and the discrete symmetry used, allows us to draw
the radiative diagram in Fig. 1, which is the only diagram
available to produce one-loop radiative corrections in the
quark subspace (u1, u2). The mixing in the Higgs sector
in the diagram comes from a term in the scalar potential
of the form λ13(φ

∗
1φ1)(φ

∗
3φ3), which turns on the radiative

corrections.
In the analysis we must be careful because, in order

to have a contribution different from zero, we must avoid
maximal mixing in the first two weak interaction states,
otherwise a submatrix of the democratic type arises. This
is simply done by taking hu11 = 1−k and h

′U
1 = 1+k in the

matrix (20), where k must be a small parameter in order
to guarantee the see-saw character of the matrix for the up
quarks.
When we evaluate the contribution coming from the di-

agram in Fig. 1, we get a finite value given by

∆ji =Nji[M
2m21 ln(M

2/m21)−M
2m23 ln(M

2/m23)

+m23m
2
1 ln(m

2
1/m

2
3)] , (22)

where

Nji = h
′U
j h

u
i1λ13

×
v1v3M

16π2(m23−m
2
1)(M

2−m21)(M
2−m23)

. (23)

M = hU4 V is the mass vertex of the heavy exotic up quark,
and m1 and m3 are the masses of φ

′0
1 and φ

0
3, respec-

tively. To estimate the contribution given by this diagram,
we assume the validity of the “extended survival hypothe-
sis” [14] which, in our case, means m1 ≈m3 ≈ vllV ≈M ,
which in turn implies a mass value

mu ≈ λ13vδ ln(V/v)/8π
2 ≈ 0.85λ13MeV ,

Fig. 1. One-loop diagram contributing to the radiative gener-
ation of the up quark mass
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that for λ13 ∼ 2 produces mu ≈ 1.7MeV, which is of the
correct order of magnitude [12] (a result that is indepen-
dent of the value of k in the first approximation).
Notice that for k �= 0, the state related to the u quark

loses its maximal mixing, now becoming {−(h−h32)u1+
[h−h32(1−k)]u2+ku3}/N , withN being a normalization
factor. A value for k can be estimated using the Cabbibo
angle.

3.2 The down quark sector

The most general Yukawa terms for the down quark sector,
using the four Higgs scalars introduced in (6), are

LdY =
∑
α=1,2,4

∑
i

QiLφ
∗
αC

⎛
⎝∑
a

hdiaαd
ac
L +
∑
j

hDijαD
jc
L

⎞
⎠

+Q3Lφ3C

(∑
i

hDi D
ic
L +
∑
a

hdad
ac
L

)
+h.c.. (24)

In the basis (d1, d2, d3, D1, D2) and using the discrete
symmetry Z2, this expression produces the following tree-
level down quark mass matrix

Md =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 hd11v1 h
d
21v1

0 0 0 hd12v1 h
d
22v1

0 0 0 hd13v1 h
d
23v1

hD11v2 h
D
21v2 h

D
1 v3 h

D
114V h

D
214V

hD12v2 h
D
22v2 h

D
2 v3 h

D
124V h

D
224V

⎞
⎟⎟⎟⎟⎟⎠
, (25)

where we have used h
D(d)
iaα vα = h

D(d)
ia vα.

The matrix Md is again a see-saw type mass ma-
trix, with at least one eigenvalue equal to zero, which
gives many physical possibilities, depending upon the
particular values assigned to the Yukawa couplings. For
example, if all the Yukawa couplings are different from
each other, then the matrix M †dMd has rank one with
one zero eigenvalue related to the eigenvector [(hD22h

D
1 −

hD2 h
D
21), (h

D
11h

D
124−h

D
12h

D
114), (h

D
21h

D
12−h

D
11h

D
22), 0, 0], which

we may identify with the down quark d in the first fam-
ily (which in any case remains massless at the tree-level).
For this case, the general analysis shows that we have
two see-saw eigenvalues associated with the bottom b and
strange s quarks, the first one being enhanced by the sum
of Yukawa couplings and the second one being suppressed
by differences.
In the particular case when all the Yukawa couplings

are equal to one but hD114 = h
D
224 ≡H

D �= 1, the null space
of M†dMd has rank two, with the eigenvectors associated
with the zero eigenvalues given by [−2, 1, 1, 0, 0]/

√
6 and

[0,−1, 1, 0, 0]/
√
2, which implies only one see-saw eigen-

value associated with the bottom quark bwith a mass value
mb ≈ 6vδ/(1+HD) ≈ 3mc/[h(1+HD)], and with masses
for the two heavy states of the order of V (1±HD).
For the first case analyzed in the previous paragraph,

the chiral symmetry remaining at tree-level is SU(2)f
(quarks u and d are massless), and for the second case the

chiral symmetry is SU(3)f (quarks u, d and s aremassless).
In both cases, the chiral symmetry will be broken by the
radiative corrections.
In any case, a realistic analysis of the down sector re-

quires bearing in mind the mixing matrix of the up quark
sector and the fact that the CKM mixing matrix is al-
most diagonal and unitary. Aiming at this and in order to
avoid a proliferation of parameters again, let us analyze the
particular case given by the following left-right symmetric
(Hermitian) down quark mass matrix

M ′d = h
′v

⎛
⎜⎜⎜⎝

0 0 0 1 1
0 0 0 1 1
0 0 0 f g
1 1 f HDδ−1 δ−1

1 1 g δ−1 HDδ−1

⎞
⎟⎟⎟⎠ , (26)

where f and g are parameters of order one. This is the most
general Hermitian mass matrix with only one zero eigen-
value related with the state (d1−d2)/

√
2 (again maximal

mixing, as required in order to end up with an almost diag-
onal and unitary CKM mixing matrix).
The two see-saw exact eigenvalues ofM ′d are

−h′ v
δ

4

{[
(f − g)2

HD−1
+
8+(f+ g)2

1+HD

]

±

√[
(f − g)2

HD−1
+
8+(f+ g)2

1+HD

]2
−
8(f − g)4

1− (HD)2

}
. (27)

Moreover, notice that for the particular case g = −f
(which implies some Yukawa couplings becoming com-
plex), the five eigenvalues of the Hermitian matrix above
yield the following simple exact analytical expressions

h′ δ−1 v

2

[
0,HD+ (1±

√
1+16δ2/(HD+ )

2) ,

HD− (1±
√
1+8f2δ2/(HD− )

2)

]
, (28)

where HD± = 1±H
D. The two see-saw values are thus

4 δ/HD+ and 2 δ f
2/HD− ; which imply f

2h′/h≈mbHD− /mc
and 2h′/h≈HD+ms/mc, which can be seen as either a mild
hierarchy between h and h′, or implying a detailed tuning
of some of the parameters of the order of one. The mass of
the two heavy states is proportional to h′VHD± .
Again, radiative diagrams producing a nonzero mass

for the down quark d in the first family must be found. For
this purpose, we have the four diagrams depicted in Fig. 2
(two for D1 and other two forD2 in the heavy quark prop-
agator). The mixing in the Higgs sector comes from terms
in the scalar potential of the form (f1φ1φ3φ4+f2φ1φ2φ3+
h.c.). Now the algebra shows that

md ≈ 2(f1+f2)δ ln(V/v)/8π
2, (29)

which for f1 = f2 ≈ v implies md ≈ 2mu without introduc-
ing a new mass scale in the model.
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Fig. 2. One loop diagrams contributing to the radiative gener-
ation of the down quark mass

3.3 The lepton sector

Following the spirit of the analysis in the quark sector,
and in order to avoid hierarchies in the Yukawa couplings,
we introduce the discrete Z2 symmetry in (18) in order to
avoid terms proportional to

heabLaLφ3CebL+h
′e
abεαβγL

α
aLL

β
bLφ

γ
3 +h.c.

in the Yukawa Lagrangian. Then, in order to generate
masses for the charged leptons we must include either lep-
toquark Higgs field triplets if we want to use the radiative
mechanism, or exotic leptons if we want to use the see-
sawmechanism. For example, in [5] a singlet exotic charged
lepton is introduced in the Pleitez–Frampton model [2] in
order to implement the see-saw mechanism in the lepton
sector. This analysis however is outside the scope of the
study presented here.
In a similar way, masses for the neutrinos can be gener-

ated by introducing either new scalar fields, or new neutral
exotic Weyl fermions. For example, in the context of the
model studied here, a Majorana mass for the neutrinos
can be generated by using scalars belonging to irrep {6} of
SU(3)L. These scalars can be written as a 3×3 symmetric
tensor

χαβ =

⎛
⎜⎝
χ
4/3+X
11 χ

1/3+X
12 χ

1/3+X
13

χ
−2/3+X
22 χ

−2/3+X
23

χ
−2/3+X
33

⎞
⎟⎠∼ (1, 6, X) ,

(30)

where the upper symbol stands for the electric charge.
Clearly, a VEV of the form 〈χ033(1, 6, 2/3)〉 ∼M produces
a Majorana mass term of the form Mν0clLν

0c
l′L, a VEV

of the form 〈χ022(1, 6, 2/3)〉 ∼ w produces a Majorana

mass term of the form wν0lLν
0
l′L, and a VEV of the form

〈χ023(1, 6, 2/3)〉 ∼m produces a Dirac mass term for the
neutrinos. This issue is studied, for example, in [6, 7], where
SU(3)L scalar singlets, triplets and sextuplets are used in
order to provide the model with a realistic neutrino mass
spectrum.

4 Gauge coupling unification

In a field theory, the coupling constants are defined as
effective values which are energy scale dependent accord-
ing to the renormalization group equation. In the modi-
fied minimal subtraction scheme [15], which we adopt in
the following, the one loop renormalization group equation
(RGE) for α= g2/4π reads

µ
d α

d µ

−bα2 , (31)

where µ is the energy at which the coupling constant α is
evaluated. The constant value b, called the beta function, is
completely determined by the particle content of the model
by

2πb=
11

6
C (vectors)−

2

6
C (fermions)−

1

6
C (scalars) ,

where C(. . . ) is the group theoretical index of the repre-
sentation inside the parentheses (we are assuming Weyl
fermions and complex scalar fields [10]).
For the energy intervalmZ < µ<MG, the one loop so-

lutions to the RGE (31) for the three SM gauge coupling
constants are

α−1i (mZ) =
α−1i (MG)

ci
− bi(F,H) ln

(
MG

mZ

)
, (32)

where i= Y, 2, c refers to the coupling constants of U(1)Y ,
SU(2)L and SU(3)c, respectively, with the beta functions
given by

2π

⎛
⎝
bY
b2
bc

⎞
⎠=

⎛
⎝
0
22
3
11

⎞
⎠−

⎛
⎜⎝
20
9
4
3
4
3

⎞
⎟⎠F −

⎛
⎝
1
6
1
6
0

⎞
⎠H, (33)

where F is the number of families contributing to the beta
functions andH is the number of low energy SU(2)L scalar
field doublets (H = 1 for the SM). In (32) the constants ci
are group theoretical factors that depend upon the embed-
ding of the SM factors into a covering group, and warrant
the same normalization for the covering group G and for
the three group factors in the SM. For example, if the
covering group is SU(5), then (cY , c2, cc) = (3/5, 1, 1), but
they are different for other covering groups (see, for ex-
ample, the table in [16]).
The three running coupling constants in αi, may or may

not converge into a single energy GUT scale MG; if they
do, then αi(MG) = α is a constant independent of the in-
dex i. Now, for a embedding into a given covering group, ci
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are fixed values, and if we use for F = 3 (an experimental
fact) andH = 1 as in the SM, then (32) constitutes a set of
three equations with two unknowns, α andMG, which may
or may not have a consistent solution (more equations than
unknowns).
The inputs to be used in (32) for α−1i (mZ) are calcu-

lated from the experimental results [12]

α−1em(mZ) = α
−1
Y (mZ)+α

−1
2 (mZ)

= 127.918±0.018 ,

sin2 θW (mZ) = 1−α
−1
Y (mZ)αem(mZ)

= 0.23120±0.00015 ,

αc(mZ) = 0.1213±0.0018 ,

which imply α−1Y (mZ) = 98.343± 0.036, α
−1
2 (mZ) =

29.575±0.054, and α−1c (mZ) = 8.244±0.122.
It is a well-known fact that the model based on the non-

supersymmetric SU(5) group of Georgi and Glashow [11]
lacks gauge coupling unification becauseMG is not unique
in the range 1014GeV ≤MG ≤ 1016GeV, predicting for
the proton lifetime τp a value between 2.5× 1028 years
and 1.6×1030 years, which by the way is ruled out by ex-
perimental measurements [17]. If we introduce one more
free parameter in the solutions to the RGE, as for ex-
ample letting H become a free integer number, then we
now have three unknowns with three equations that al-
ways have a mathematical solution (not necessarily with
a physical meaning). Doing that in (32), we find that for
H = 7 (seven Higgs doublets) we get the unique solution
MG = 10

13GeV�mZ which, although a physical solution,
is ruled out by the proton lifetime. So, if we still want unifi-
cation, new physics at an intermediate mass scaleMV such
that mZ <MV <MG must exist, supersymmetry (SUSY)
being a popular candidate for that purpose [17].
The question now is if the 3-3-1 model under con-

sideration in this paper introduces an intermediate mass
scale MV such that it achieves proper gauge coupling
unification, being an alternative to SUSY. To answer
this question using SU(6) as the covering group as pre-
sented in Sect. 2, we must solve the following set of seven
equations:

α−1i (mZ) =
α−1i (MV )

ci
− bi(F,H) ln

(
MV

mZ

)
,

α−1j (MV ) =
α−1

c′j
− b′j ln

(
MG

MV

)
,

α−1Y (MV ) = α
−1
1 (MV )+α

−1
3 (MV )/3 , (34)

where the last equation is just the matching conditions in
(7), and i= c, 2, Y and j = c, 3, 1 for the SM and the 3-3-
1 model, respectively. The constants ci are (cY , c2, c3) =
(3/5, 1, 1) as before, and (c′1, c

′
3, c
′
c) = (3/4, 1, 1), with the

value c′1 = 3/4 calculated from the electroweak mixing
angle in (2). b′j stand for the beta functions for the 3-3-1
model under study here.
Equation (34) constitutes a set of seven equations

with seven unknowns α, αj(MV ),MV ,MG and αY (MV )

[α2(MV ) = α3(MV ) according to the matching conditions].
There is always a mathematical solution to this set of equa-
tions, but we want only physical solutions, that is solutions
such thatmZ <MV <MG.
The new beta functions, calculated with the particle

content introduced in Sect. 2, are

2π

⎛
⎝
b′1
b′3
b′c

⎞
⎠=

⎛
⎝
0−8−7/9
11−4−4/6
11−6−0

⎞
⎠=

⎛
⎝
−79/9
19/3
5

⎞
⎠ , (35)

where in the middle term we have separated the contribu-
tions coming from the gauge bosons, the fermion fields and
the scalar fields, in that order. When we introduce these
values in (34), we do not obtain a physical solution in the
sense that we getmZ <MG <MV .
Of course, if there are more particles at the 3-3-1 mass

scale, then the beta functions given in (35) are not the full
story. In particular, we know from Sect. 3 that at least new
Higgs scalars are needed in order to generate a consistent
lepton mass spectrum, so let us allow the presence in the
model of the following Higgs scalar multiplets at the 3-3-1
mass scale:N

(1)
X SU(3)L singlets (with U(1)X hypercharge

equal to X), N
(3)
X triplets (color singlets), Ñ

(3)
X leptoquark

triplets (color triplets) andN
(6)
X sextuplets (color singlets).

These new particles will contribute to the beta functions b′j
in the following way:

2π

⎛
⎝
b′1
b′3
b′c

⎞
⎠=

⎛
⎜⎜⎝
−79/9−

∑
X X

2f(N
(6)
X , Ñ

(3)
X , N

(3)
X , N

(0)
X )

19/3− 16
∑
X(N

(3)
X +3Ñ

(3)
X +5N

(6)
X )

5−
∑
X Ñ

(3)
X /2

⎞
⎟⎟⎠ ,

(36)

where f(N
(6)
X , Ñ

(3)
X , N

(3)
X , N

(0)
X ) = (2N

(6)
X +3Ñ

(3)
X +N

(3)
X +

N
(0)
X /3); with these new SU(3)L multiplets contributing
or not to the beta functions bi of the SM factor groups, in
agreement with the extended survival hypothesis [14] (for
example, a sextuplet with a VEV 〈χ23(1, 6, 2/3)〉 ∼ v con-
tributes as an SU(2)L doublet in bY and b2, etc.).
The calculation shows that for the following set of ex-

tra scalar Higgs fields that do not develop VEV: N
(0)
X = 0,

N
(3)
1/3 = 1,N

(3)
−2/3 = 1, Ñ

(3)
X = 0 N

(3)
0 = 21 andN

(6)
0 = 9, the

set of equations in (36) has the physical solution

MV ≈ 1.9TeV<MG ≈ 5×10
8GeV , (37)

which provides a convenient 3-3-1mass scale and a low uni-
fication GUT mass scale, as is shown in Fig. 3.
However, is this low GUT scale in conflict with the

bounds on proton decay? The answer is no, because due to
the Z2 symmetry, our unifying group is SU(6)×Z2. Then
we must assign to each irrep of SU(6) in (9) a given Z2
charge in accordance with the Z2 value assigned to the 3-3-
1 states in (18). For example, if we assign to one of the eight
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Fig. 3. Solutions to the RGE for the 3-3-1 model. For the

meaning of N
(r)
X see the main text

{6∗}= {Dc,−N0E, E
−, N0cE }L states in (9) aZ2 value equal

to 1, then we can perfectly identifyDcL with one of the ordi-
nary down quarks (dc, sc, bc)L, but then (−N0E , E

−, N0cE )L
cannot correspond to (−ν0l , l

−, ν0cl )L because all of them
have a Z2 charge equal to zero; and the same for the other
way around. As a consequence, the down quark dcL can not
live together with (νe, e

−)L in the same SU(6)×Z2 irrep,
and the proton can not decay into light states belonging
to the weak basis. The decay can of course occur via the
mixing of ordinary 3-3-1 states with the extra new states
in SU(6), but such a mixing is of the order of (MV /MG)

2,
which is a very small value. Of course, this argument is
valid as far as we can find a mechanism able to produce
GUT scale masses for all the extra states, but such an an-
alysis is outside the scope of the present work.

5 Constraints on the parameters

In this section we shall set bounds on the mass of the new
neutral gauge bosonZµ2 , and its mixing angle θ with the or-
dinary neutral gauge boson, using the partial decay width
for Zµ1 . We shall also set constraints coming from possible

Table 3. Experimental data and SM values for some parame-
ters related to neutral currents

Experimental results SM

ΓZGeV 2.4952±0.0023 2.4966±0.0016
Γ (had)GeV 1.7444±0.0020 1.7429±0.0015
Γ (l+l−)GeV 83.984±0.086 84.019±0.027
Re 20.804±0.050 20.744±0.018
Rµ 20.785±0.033 20.744±0.018
Rτ 20.764±0.045 20.790±0.018
Rb 0.21664±0.00068 0.21569±0.00016
Rc 0.1729±0.0032 0.17230±0.00007
QCsW −72.74±0.29±0.36 −73.19±0.13
MZ1GeV 91.1872±0.0021 91.1870±0.0021

FCNC effects and analyze the violation of unitarity of the
Cabbibo–Kobayashi–Maskawamixing matrix V 0CKM .

5.1 Bounds onMZ2 and θ

Let us notice to start with that, after the identification of
the mass eigenstates, we can properly bound sin θ andMZ2
by using parameters measured at the Z pole from CERN
e+e− collider (LEP), SLAC linear collider (SLC), and the
atomic parity violation constraints given in Table 3.
The expression for the partial decay width for Zµ1 → ff̄

is

Γ (Zµ1 → ff̄) =
NCGFM

3
Z1

6π
√
2
ρ

×

{
3β−β3

2
[g(f)1V ]

2+β3[g(f)1A]
2

}

× (1+ δf)REWRQCD , (38)

where f is an ordinary SM fermion, Zµ1 is the physical
gauge boson observed at LEP, NC = 1 for leptons while
for quarks NC = 3(1+αs/π+1.405α

2
s/π

2− 12.77α3s/π
3),

where the 3 is due to color and the factor in parenthesis
represents the universal part of the QCD corrections for
massless quarks (for fermion mass effects and further QCD
corrections which are different for vector and axial-vector
partial widths, see [18]); REW are the electroweak correc-
tions including the leading order QED corrections given
by RQED = 1+3α/(4π). RQCD are further QCD correc-
tions (for a comprehensive review see [19] and references

therein), and β =
√
1−4m2f/M

2
Z1
is a kinematic factor

that can be taken equal to 1 for all the SM fermions except
for the bottom quark. The factor δf contains the one loop
vertex contribution which is negligible for all fermion fields
except for the bottom quark, for which the contribution
coming from the top quark, at the one loop vertex radiative

correction, is parameterized as δb ≈ 10−2 [−m2t/(2M
2
Z1
)+

1/5] [20]. The ρ parameter can be expanded as ρ = 1+
δρ0+ δρV where the oblique correction δρ0 is given by

δρ0 ≈ 3GFm2t /(8π
2
√
2), and δρV is the tree-level contribu-

tion due to the (Zµ−Z ′µ) mixing which can be parameter-

ized as δρV ≈ (M2Z2/M
2
Z1
− 1) sin2 θ. Finally, g(f)1V and

g(f)1A are the coupling constants of the physical Z
µ
1 field

with ordinary fermions which, for this model, are listed in
Table 1.
In the following we shall use the experimental values [12]:

MZ1 = 91.188GeV, mt = 174.3GeV, αs(mZ) = 0.1192,
α(mZ)

−1 = 127.938, and sin θ2W = 0.2333. These values are
introduced using the definitionsRη ≡ ΓZ(ηη)/ΓZ(hadrons)
for η = e, µ, τ, b, c, s, u, d.
As a first result, notice from Table 1 that this model

predicts Re =Rµ =Rτ , in agreement with the experimen-
tal results in Table 3, independent of any flavor mixing at
the tree-level.
The effective weak charge in atomic parity violation,

QW , can be expressed as a function of the number of pro-
tons (Z) and the number of neutrons (N) in the atomic
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nucleus in the form

QW =−2 [(2Z+N)c1u+(Z+2N)c1d] , (39)

where c1q = 2g(e)1Ag(q)1V . The theoretical value for QW
for the cesium atom is given by [21]QW (

133
55 Cs) =−73.19±

0.13+∆QW , where the contribution of new physics is in-
cluded in∆QW , which can be written as [22]

∆QW =

[(
1+4

S4W
1−2S2W

)
Z−N

]
δρV +∆Q

′
W . (40)

The term ∆Q′W is model dependent and it can be ob-
tained for our model by using g(e)iA and g(q)iV , i= 1, 2,
from Tables 1 and 2. The value that we obtain is

∆Q′W = (3.75Z+2.56N) sinθ+(1.22Z+0.41N)
M2Z1
M2Z2

.

(41)

The discrepancy between SM and experimental data for
∆QW is given by [21]

∆QW =Q
exp
W −Q

SM
W = 0.45±0.48, (42)

which is 1.1 σ away from the SM predictions.
Introducing the expressions for the Z pole observable in

(38), with ∆QW in terms of new physics in (40) and using
experimental data from LEP, SLC and atomic parity vi-
olation (see Table 3), we do a χ2 fit and we find the best
allowed region in the (θ−MZ2) plane at 95% confidence
level (CL). In Fig. 4 we display this region, which gives us
the constraints

−0.00156≤ θ ≤ 0.00105 , 2.1 TeV≤MZ2 . (43)

As we can see, the mass of the new neutral gauge boson
is compatible with the bound obtained in pp̄ collisions at
the Fermilab Tevatron [23]. From our analysis we can also
see that for |θ| → 0, MZ2 peaks at a finite value larger
than 100 TeV, which still copes with the experimental con-
straints on the ρ parameter.

Fig. 4. Contour plot displaying the allowed region for θ vsMZ2
at 95% CL

5.2 Bounds from unitarity violation
of the CKM mixing matrix

The see-saw mass mixing matrices for quarks presented in
(20) and (25) are not a consequence of the particular dis-
crete Z2 symmetry introduced in (18), in the sense that it
is a straightforward calculation to show that any Zn sym-
metry will reproduce the same quark mass matrices as long
as we impose the following constraints:

– A pure see-saw mass matrix in the down quark sector.
– A tree-level mass entry for the top quark in the third
family, plus a see-saw matrix for the other two families
in the up quark sector.
– The non-minimal set of four Higgs scalar fields intro-
duced in (6).

As a consequence of the mixing in the quark mass ma-
trices, violation of unitarity of the CKM mixing matrix
appears. Notice that for this particular model, V 0CKM is ob-
tained as the upper left 3×3 submatrix of a 4×5 mixing
matrix (obtained, in turn, as the product of a 4×3 sub-
matrix taken from the unitary 4×4 diagonalizationmatrix
in the up quark sector with the fourth column suppressed,
times a 3×5 submatrix of the unitary 5×5 diagonaliza-
tion matrix of the down quark sector with the last two rows
suppressed; all this as a consequence of having only three
active quarks in the charged weak current Jµ

W+
).

The unitarity violation arising in the model must be
compatible with the experimental constraints on the CKM
mixing parameters, as discussed, for example, in Section 11
of [12], where uncertainties in the third decimal place of the
entries V 0uidj (the i, j element of V

0
CKM), can be taken as

possible signals of violation of unitarity.
Now, for the model discussed here, the structure of the

quark mass matrices implies a mixing proportional to cos δ
(with δ = v/V , as before) for the known quarks of each
sector, which, when combined in the V 0uidj entries, gives

a mixing of the form cos2 δ = 1− sin2 δ ≈ 1− δ2, δ2 being
proportional to the violation of unitarity in the model.
Taking for V ≈MZ2 ≈ 2.1 TeV (the lower bound in (43), we
obtain δ2 ≈ 3.4×10−3, which is in the limit of the allowed
unitarity violation of V 0CKM [12].
However, the former is not the full story, because vio-

lation of unitarity of V 0CKM automatically induces FCNC.

Unfortunately, violation of unitarity of V 0CKM is not the
best place to look for FCNC processes, because almost all
the phenomenology of the CKM mixing matrix is done
under the assumption of unitarity, which is not the case in
the model presented here.

5.3 FCNC processes

In a model like this, with four scalar triplets and mixing of
ordinary with exotic fermion fields, we should worry about
possible FCNC effects.
First, notice that due to our Z2 symmetry, FCNC ef-

fects do not occur at tree-level in the Lagrangian, because
each flavor couples only to a single multiplet. However,
FCNC effects can occur in Jµ,L(Z) and Jµ,L(Z

′) in (14)
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and (15), respectively, due again to the mixing of ordi-
nary and heavy exotic fermion fields (notice from (14)
that Jµ,L(Z) only includes the three ordinary up-type and
down-type quarks as active quarks).
The best place to study the suppression of d↔ s cur-

rents is in the (K0L−K
0
S) mass difference, which may

get contributions from the exchange of Z1 and Z2 be-
tween d↔ s currents. The contribution from Z1 is propor-
tional to |V 0†us V

0
ud|
2 ≈ |V 0†us V

0
ud|
2
SM+4δ

4 (where |V 0†us V
0
ud|
2
SM

refers to the SM contribution, which is in agreement with
the experimental data). Then, the mixing of light and
heavy quarks implies extra FCNC effects proportional to
4δ4, which, for V ≈ 2.1 TeV as before, implies a contri-
bution to new FCNC effects proportional to 1.2× 10−5.
This value should be compared with the experimental
bound m(KL)−m(KS) ≈ 3.48± 0.006×10−12MeV [12].
Then, for V ≈ 2.1 TeV we have 4δ4 ≤ 0.006/3.48, which
means that there is room in the experimental uncertainties
to include the new FCNC effects coming from violation of
unitarity of the CKM mixing matrix present in the model.
Now, the contributions coming from Z2 alone are safe,

because they are not only constrained by the δ parame-
ter, but also by the mixing angle−0.00156≤ θ≤ 0.00105 as
given by (43).

6 Conclusions

During the last decade several 3-3-1 models for one and
three families have been analyzed in the literature, the
most popular one being the Pleitez–Frampton model [2],
which is certainly not the only possible construction based
on this local gauge group. Another two different three-
family models, more appealing but not so popular in the
literature, are introduced in [3] and [8, 24]. The model
in [3], studied in this paper, contains right-handed neutri-
nos, while the model in [24] does not include right-handed
neutrinos but has one extra exotic electron per family. Fur-
ther, the analysis presented in [8, 25] shows that there is
indeed an infinite number of anomaly-free models based on
the 3-3-1 gauge structure, most of them including particles
with exotic electric charges; but the number of models with
particles without exotic electric charges are just a few.
For example, another two 3-3-1 models for one family and
only with particles of ordinary electric charge are analyzed
in [26].
In this paper, we have carried out a systematic study

of the so called 3-3-1 model with right handed neutrinos.
Concretely, we have recalculated its charged and neutral
currents, embedded the structure into SU(6) as a cover-
ing group, looked for unification possibilities, studied the
quark mass spectrum, and finally, by using updated preci-
sion measurements of the electroweak sector, we have set
new limits for the mixing angle between the two heavy elec-
trically neutral gauge weak bosons.
In our analysis, we have done a detailed study of the

conditions that produce a consistent quark mass spectrum
in the context of this model, an analysis only sketched in
previous works [3], except for the neutral lepton sector [6].

First we have shown that a set of four Higgs scalars is
enough to properly break the symmetry producing a con-
sistent mass spectrum in the gauge boson sector. Then,
the introduction of an appropriate anomaly-free discrete
Z2 symmetry allows us to construct an appealing mass
spectrum in the quark sector without hierarchies in the
Yukawa couplings. In particular we have carried a program
in which: the three exotic quarks get heavy masses at the
TeV scale; the top quark gets a tree-level mass at the elec-
troweak scale; then the bottom, charm and strange quarks
get see-saw masses, and finally, the first family quarks get
radiative masses in such a way that md ≈ 2mu; the for-
mer without introducing strong hierarchies in the Yukawa
coupling constants, or new mass scales in the model.
In addition, we have also embedded the model into the

covering group SU(6)⊃ SU(5) and studied the conditions
for gauge coupling unification at a scaleMG ≈ 5×108GeV.
The analysis has shown that a physical (mZ <MV <MG)
one-loop solution to the RGE can be achieved at the ex-
pense of introducing extra Higgs scalars at the intermedi-
ate energy scaleMV .
The fact that the RGE produces a 3-3-1 mass scale of

the same order (∼ 2 TeV) as the lower limit obtained in
the phenomenological analysis presented in Sect. 5 [com-
pare (37) and (43)] is neither accidental nor fortuitous. As
a matter of fact, the extra scalar fields contributing to the
beta functions in (36), were introduced just for this job.
A different set of scalar Higgs fields will produce either dif-
ferent 3-3-1 and GUT mass scales, no unification at all, or
unphysical solutions. Even though our analysis may look
a little arbitrary, we emphasize that we make the decision
to play only with the most obscure part of any local gauge
theory: the Higgs scalar sector.
Finally, we want to stress that, as discussed in the

previous section, the lower bound 2.1 TeV for the mass
of the new neutral gauge boson Zµ2 is compatible with
the constraints coming from violation of unitarity of the
CKMmixing matrix and from new contributions to FCNC
processes.
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